Emptying & Transportation of Septage

Shantanu Kumar, Water Programme Centre for Science and Environment Faecal Sludge and Septage Management

Dated: 18.12.2016

Pumped from septic tank

Manually collected from septic tank

FS Quantification

- Accurate estimates of volume of FS produced is essential for the proper sizing of infrastructure required for:
 - Collection and transport networks;
 - Discharge sites;
 - Treatment plants;
 - Enduse or disposal options
- Two theoretical approaches to quantify volume of FS generation:
 - Sludge production method;
 - Sludge collection method.

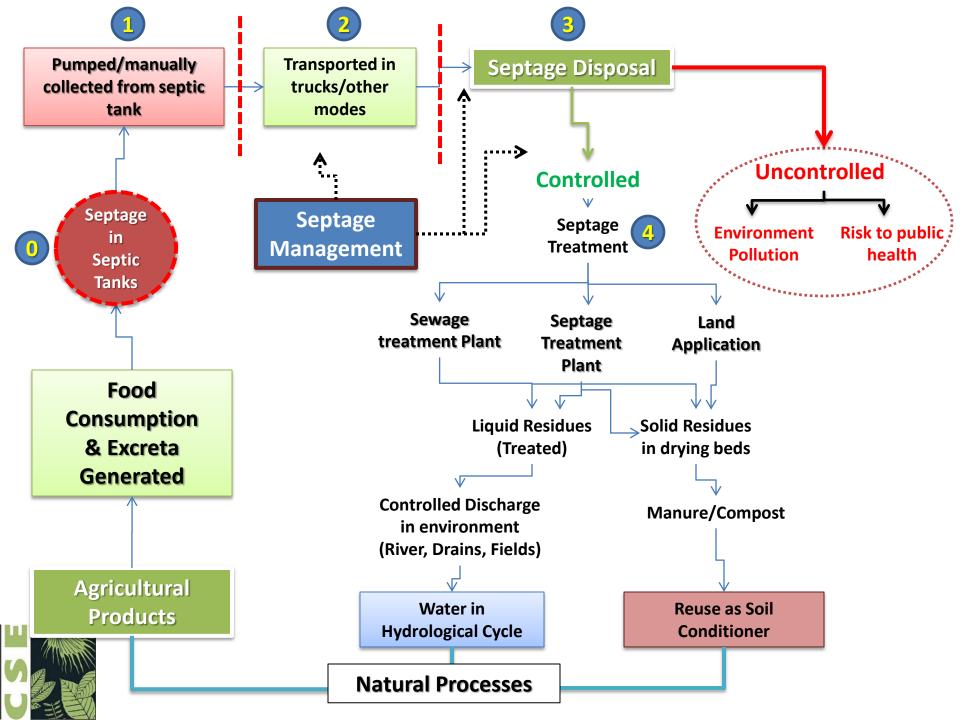
Transportation

Tractor-Trolley

Truck

Auto-Tank

Septage Disposal


Open areas away from city

Municipal sewer line/storm water drain

Nearby water body (talab, kua, johad, nadi)

Nearby river drain

Septage collection

- In India main focus is on centralized STP
- Recently, Septage has been given due attention with NUSP
- However, no local government has paid attention towards services related to Septage (collection/treatment)
- People largely depend on private service providers to clean septic tanks

Prevailing practices: 1

Source: Google image, manual scavenging link

Emptying

Solapur, Maharashtra

Emptying (removal) issues

- Considered as an unpleasant and repulsive job
- Poses risk of transmission of diseases of faecal origin during removal
- Noxious gases while opening chambers pose threat
- In-efficient cleaning due to irregular de-sludging
- Reduced anaerobic reaction rates due to complete removal of sludge
- In-adequate safety measures

In efficient cleaning

- The septage removal is not regular/scheduled
 unless becomes a compulsion
- The prevailing practices does not ensure efficient cleaning of the septic tanks
- The locations of the septic tanks are at times difficult to reach

Reduced sludge digestion

- The sludge from the tank is completely removed from the septic tanks
- Therefore, the supporting culture (bacteria) for decomposition are reduced in sufficient numbers
- Due to this the anaerobic reaction rates (decomposition) reduces
- This results in more sludge formation

Labor issues

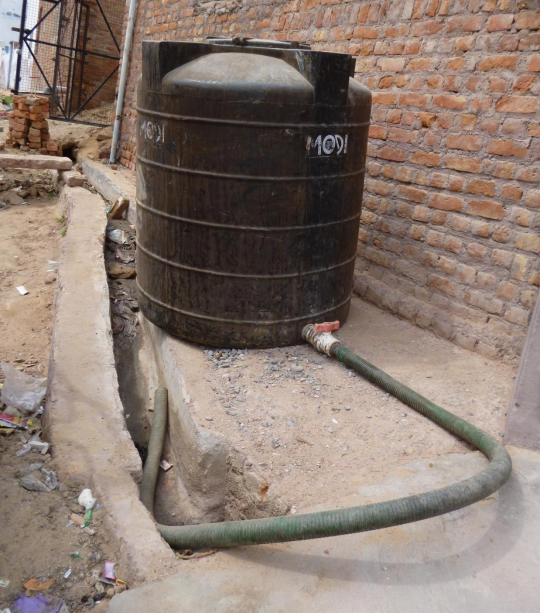
- Mostly done by private parties as a business
- This is unpleasant act for labor
- They do not understand the impacts of wrong practices related to septage cleaning
- Inadequate tools available while cleaning
- Do not understand the environmental impacts of wrong practices

Prevailing practices-2

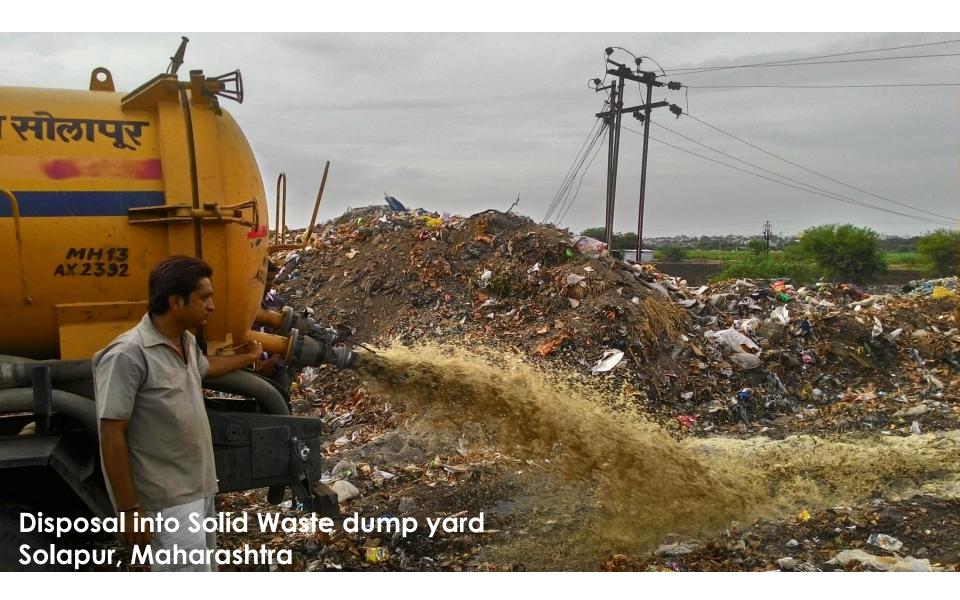
செழ்த் பெற்க் வி

Cell: 984236676 984236676 986508781

CSE Field visit, 2014


CSE Field visit, 2014

Transportation



Environmental impacts

- Private parties do not take adequate measures to dispose septage systematically
- It is
 - Dumped far away at open areas
 - Disposed off in sewer chambers in night time
 - Dumped in to land fill sites
 - Sold to farmers as manure

Disposal

CSE Field visit, 2014

Disposal in to Trunk sewer. Dewas, Madhya Pradesh

Africa Example

MAPET

EAWAG SANDEC 2008

South Asian Examples

Source: AECOM International Development, Inc. and the Department of Water and Sanitation in Developing Countries (Sandec) at the Swiss Federal Institute of Aquatic Science and Technology (Eawag), 2010

Source: AECOM International Development, Inc. and the Department of Water and Sanitation in Developing Countries (Sandec) at the Swiss Federal Institute of Aquatic Science and Technology (Eawag), 2010

Bangladesh Example

	India	Indonesia	Malaysia	Philippines	Sri Lanka	Thailand	Vietnam
Clear Policy Frameworks	(NUSP, state sanitation plans)	0	(WSIA, developer guidelines)	(CWA, DOH operations manual)	0	(PHA, MOPH operations manual)	0
Strong Local Programs	0	(Malang)	0	(Marikina, Dumaguete)	0	(Non- thaburi)	(Hai Phong)
Effective Promotion Campaigns	(Nirmal Shahar Puraskar)	0	(Indah Water Konsortium)	(Marikina)	0	0	0
Successful Private Service Provision	0	(Surabaya)	(Indah Water Konsortium)	(Manila Water Company)	0	0	(Hoa Binh Company)
Diverse Technologies for Septage Treatment	0	(drying beds, modified activated sludge)	(trenches, drying beds, mobile dewatering units, activated sludge)	(mobile dewatering units, activated sludge)	(trenches, coco coir mats)	(anaerobic digestion tanks)	(dewater- ing units, drying beds, wetlands, compost)

O = no known good practices

 $\mathbf{o}=$ emerging practice, needs improvement

= replicable good practice

: AECOM International Development, Inc. and the Department of Water and Sanitation in Developing Countries (Sandec) at the Swiss I Institute of Aquatic Science and Technology

Conclusions

- FS quantification is important for FSM planning including designing the treatment systems;
- Difficult to quantify production of FS in urban areas;
- More field-based research is needed on FS quantification

